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Wave-like motion in a periodic structure of bubbles that steadily moves through
ideal incompressible liquid is considered. The wavelength is microscopically short.
Some general local properties containing general information about two-phase flow
are found. The dynamics of small-amplitude disturbances is studied in linear systems
(called trains) and in spatial structures (such as a cubic lattice). The behaviour of one-
dimensional waves in various structures is shown to differ widely: one-dimensional
waves in the train do not magnify, whereas in the three-dimensional structure there
may be stability and instability of one-dimensional waves. In the continuum limit the
one-dimensional instability is demonstrated not to be related to the mean parameters
of two-phase flow. The long-wave dynamics is shown to depend significantly on the
relative velocity vector orientation in the lattice, but orientation is not included in the
usual equations for the two-phase continuum. One result of this study is the relation
between the short-wave-type instability of the periodic structure, on the one hand,
and the instability of one-dimensional flow of inviscid bubbly liquid discovered by
van Wijngaarden on the other. Long microscopic waves are analysed to determine
the coefficients of one-dimensional equations for a two-phase continuum model. The
velocity orientation at which the coefficients of the traditional one-dimensional model
are obtained is found. Short waves in a stationary structure are studied by using the
system of equations based on the equation of motion of a small sphere in a general
potential flow. A refined equation for the force applied on a sphere in a non-uniform
potential flow is derived.

1. Introduction
Consider the movement of multiple gas bubbles in an ideal liquid without body

forces. Assume that the bubbles are spheres, the liquid flow is potential, and the
volumetric concentration of bubbles is low. When bubbles are at nodes of a regular
lattice and form a periodic structure, their configuration may be stationary due to
symmetry and spatial periodicity of the system.

Stationary periodic structures have been used in many research papers in order to
obtain information about macroscopic properties of bubbly liquids and to substantiate
averaged equations. The added mass coefficient (Milne-Thomson 1949; Sedov 1976)
and the macroscopic properties of the bubbly liquid, in connection with the averaged
dynamic equations, have been investigated by using periodic structures (Cook &
Harlow 1984; Wallis 1989, 1991, 1994a, b; Biesheuvel & Spoelstra 1989; Sangani,
Zhang & Prosperetti 1991; Wallis, Cai & Luo 1992; Cai & Wallis 1992, 1993), the
cell method (Zuber 1964; Nigmatulin 1979, 1991; Wallis 1992), the random state
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model (van Wijngaarden 1976b, 1993; Biesheuvel & van Wijngaarden 1984; Sangani
& Didwania 1993a; Zhang & Prosperetti 1994), and the variational approach (Geurst
1985, 1988), etc.

Wallis (1989, 1991, 1992) has related the added mass coefficient theory to the
classical theory of electric conductivity of a dispersion (Maxwell 1881; Rayleigh 1892).
Sangani & Acrivos (1983) studied the conductivity of periodic arrays of spheres with
a quite large concentration. Features of rectangular structures (or arrays) were studied
to take into account the effect of microscopic properties on macroscopic equations
(Wallis 1994a; Wallis, Luo & McDonald 1996). The importance of microstructure
in the case of a random state of bubbly liquid was emphasized in Voinov & Petrov
(1975).

There are various versions of the continuum equations describing the motion of
a liquid with bubbles; these were derived by averaging methods in Garipov (1973),
Nigmatulin (1979, 1991), Biesheuvel & van Wijngaarden (1984), Arnold, Drew & La-
hey (1989), Wallis (1969, 1992). A bubble suspension may be described by analysing
the interaction of pairs (van Wijngaarden 1976a; van Wijngaarden & Kapteyn 1990);
a similar approach was first used by Batchelor (1972) to analyse suspension sedi-
mentation in Stokes conditions. Unlike these and many similar works, the present
study does not rely upon averaging. The work is based on an asymptotically accu-
rate description of the dynamics of multiple bubbles in inviscid liquid within linear
perturbation theory.

From Voinov & Petrov (1977) we know that a periodic structure of bubbles is
not stable. This instability is similar to the instability of a system of dipoles in
electrostatics and magnetostatics, a consequence of Earnshaw’s theorem (Earnshaw
1842; Braunbek 1939). The instability of the random state of bubbly liquids was
demonstrated in Sangani & Didwania (1993b) as the result of numerical analyses.
The authors assumed that the gas bubbles do not coalesce during collisions but jump
apart from one to the other – that is, behave as solids.

The objective of the present work is to investigate the dynamics of disturbances to
bubble structures – that is, to investigate waves in these systems. Below, waves that are
short compared with the lattice parameter are called short waves. Perturbations to the
ordered bubble structure may be studied to obtain information about features of two-
phase flows and the basic equations for a two-phase continuum. Of particular interest
are one-dimensional movements in a bubble system because, in the limiting case of
long waves, we can use them to model the phase interaction in one-dimensional two-
phase flow. Knowledge of the perturbations to periodic spatial structures is essential
in connection with the instability of one-dimensional bubbly flow in the continuum
two-phase model, as noticed for the first time in van Wijngaarden (1976b).

Up to now, waves in lattices with bubbles have not been studied. However, there
exist numerous studies on waves in bubbly liquids, based on averaged equations; see,
for example, van Wijngaarden & Biesheuvel (1988), van Wijngaarden & Kapteyn
(1990), and Lammers & Biesheuvel (1996). In the present study we will consider
continuum equations for only the long-wave limit of the equations for short waves in
a stationary bubble structure. Short waves will be studied on the basis of equations
which describe bubble dynamics at the micro-level – the microscopic equations. Such
equations for a system with multiple bubbles (Voinov & Petrov 1975) include that
describing the motion of a small sphere subjected to the force from non-uniform
potential flow (Voinov 1973; Voinov & Petrov 1973; Voinov, Voinov & Petrov 1973).

The reaction to a small body in non-uniform flow was studied for the first time by
Zhukovsky in 1896 (refer to Zhukovsky 1949). Later, the problem was considered for
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various particular conditions (Taylor 1928; Khaskind 1956; Birkhoff 1960). Solutions
in Voinov & Petrov (1973) and Voinov et al. (1973) describe reactions to a small body
in unsteady non-uniform flow, where the body shape and volume can vary.

The present article deals only with vortex-free flow; readers should bear in mind
that the potential flow model is limited and that there exist important results (Lighthill
1956; Auton 1987; Drew & Lahey 1987, 1990) about the force applied by vortical
flow to the sphere.

The article is structured as follows. First (in § 2 and § 3), we discuss the equations
of motion of an infinite system of bubbles. In § 4 we derive equations for perturbed
motions in an infinite periodic system of bubbles. Then, waves in periodic structures
are studied (§ 5–§ 9). The results are used to determine the coefficients of the equivalent
continuum model. In § 10 the short-wave theory is generalized to the case of bubble
structures in viscous fluid at large Reynolds numbers. In the Appendix the refined
equation for the hydrodynamic force applied to a sphere by the non-uniform flow
will be derived.

2. Equations for the dynamics of an infinite system of bubbles
2.1. Microscopic velocity field

Equations for bubbly liquid at the microscopic level are proposed in Voinov & Petrov
(1975). These equations take into account a variation of bubble radius, but here,
they are derived for a system of bubbles with constant radius. The derivation of the
principal equations is dealt with in detail in order for the essence of the problem
statement to be clear.

Assume that ideal incompressible liquid fills the entire space and is the medium
through which many spheres of radius R move; the liquid motion is vortex-free, and
the velocity has a potential

v = ∇Φ, ∇2Φ = 0. (2.1)

On each sphere Sm the kinematic condition is met:

x ∈ Sm, v · n = um · n. (2.2)

Here x is the radius vector in a Cartesian coordinate system, n is the normal vector
of the sphere, and um is the velocity of sphere m, where m, is either an integer (for a
linear system when the spheres are all in a line) or a triplet of integers (in the case of
a cubic lattice).

If the structure is limited in at least one direction, we require the liquid to have a
constant velocity at infinity:

v → v∞, r →∞. (2.3)

Here, r is the distance from the structure. In the case of a spatial system, (2.3) should
be replaced by specifying a mean velocity v∗ of the liquid between the spheres.

Let us assume that the minimum distance a between the centres of neighbouring
spheres is much greater than the radius R,

a� R.

To describe the velocity field, we introduce the sphere S∞ with a large radius r0:

r0 � a,

the sphere centre being at x = x0.
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Note first of all that the sphere S∞ may intersect some of the bubbles. When
r0 � a, the velocity field near the sphere centre does not change if such bubbles are
replaced by a liquid. For a point in the liquid within S∞, Green’s identity for harmonic
functions is

Φ = Φ0 +
∑
m

Φm, 4πΦm =

∫
Sm

(
1

r

∂Φ

∂n
− Φ ∂

∂n

1

r

)
dS, (2.4a, b)

where the potential Φ0 is a harmonic function inside S∞, Φm is a harmonic function
everywhere outside sphere Sm(|x − xm| > R), and r is the distance from a point on
Sm. Summation in (2.4a) and relevant subsequent formulas is only carried out for the
number m of spheres inside S∞ (|x0 − xm| < r0).

Consider flow around sphere n. The potential φ in (2.4a) may be represented as a
sum:

Φ = Φn + Φ′n, Φ′n = Φ0 +
∑
m6=n

Φm, (2.5a, b)

where the potential Φ′n is an analytic function in the vicinity of the centre of the nth
sphere (including the interior of the sphere). The radius of this vicinity is close to the
distance to the neighbouring bubble centre.

The potential Φ′n (2.5b) gives the external velocity v′:

v′n = ∇Φ′n = ∇Φ0 +
∑
m6=n
∇Φm. (2.6)

To meet condition (2.2) for a small sphere Sn, we use a Taylor series expansion for
the external velocity vector at a centre xn:

v′n(x) = v′(xn) +
∂v′

∂xi
(xn)(xi − xni ) + · · · . (2.7)

Here, the repeated subscript i is the index for summation from 1 to 3. The potential
Φm is the sum of a dipole potential and the small contribution Φ̃m of multipoles of
higher orders (Voinov & Petrov 1975):

Φm = 1
2
R3w′m · ∇ 1

rm
+ Φ̃m, rm = |x− xm|, (2.8)

w′m = um − v′(xm). (2.9)

Here, w′m is the sphere velocity relative to the liquid. The summand Φ̃m in (2.8)
is small when R/a is small; flow non-uniformity may be neglected in the leading
approximation.

On the basis of (2.4a) the liquid velocity is

v = ∇Φ0 +
∑
m

∇Φm. (2.10)

For a limited system of spheres the vector ∇Φ0 is equal to v∞, which is the flow
velocity at infinity (see condition (2.3)). But for an infinite spatial system of spheres
∇Φ0 is unknown. It can be determined by averaging the vectors v = ∇Φ and v′ = ∇Φ′.
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2.2. Relation of local velocities to averaged values

Consider two types of averaging formulas from Voinov & Petrov (1975). The mean
value 〈f〉 of a function f(x) specified for a liquid volume is defined as

(1− c)〈f〉 =
1

V

∫
Vf

f(x′) d3x′. (2.11)

where the domain Vf is filled with the liquid, Vf ∈ V ; c is the volumetric concentration
of the spheres.

Assume that f is specified for bubble centres: f = fn at x = xn. In this case the
mean value f̄ is defined as

cf̄ =
1

V

∑
n

fnVn, |x0 − xn| < r0, (2.12)

where Vn is the volume of the nth bubble.
Now we can determine ∇Φ0. First, we express ∇(Φ′ −Φ0) by utilizing (2.6) and carry

out averaging on the basis of (2.12):

c∇(Φ′ − Φ0) =
1

V

∑
n

∑
m6=n

∫
Vn

∇Φm(x′) d3x′. (2.13)

Here, we have used the fact that any function φ(x) that is harmonic within the sphere
Vn satisfies the equation ∫

Vn

φ(x′) d3x′ = φ(xn)Vn. (2.14)

Using (2.4a) to express ∇(Φ− Φ0), and averaging on the basis of (2.11) results in

(1− c)〈∇(Φ− Φ0)〉 = − 1

V

∑
m

(∫
V\Vm
∇Φm(x′) d3x′ −∑

n6=m

∫
Vn

∇Φm(x′) d3x′
)
.

(2.15)

Note that ∫
V\Vm
∇Φm(x′) d3x′ = 0, (2.16)

because Φm is a result of superposition of a dipole and higher-order multipoles (at
the centre of the sphere Sm).

From (2.13), (2.15), (2.16) it follows that

(1− c)〈∇(Φ− Φ0)〉+ c∇(Φ′ − Φ0) = 0. (2.17)

So, by resorting to (2.11), (2.12), and (2.14), we derive

∇Φ0(x0) = (1− c)〈∇Φ〉+ c∇Φ′. (2.18)

Hereinafter, let x0 be replaced by x. By substituting (2.18) into (2.10), we obtain

v(x) = (1− c)〈v〉+ cv′ +
∑
m

∇Φm(x). (2.19)

From this, the external velocity is

v′n(x) = (1− c)〈v〉+ cv′ +
∑
m6=n
∇Φm(x). (2.20)
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Note that (2.19) is an exact equation in the limit r0/a→∞. Hereinafter, we make use
of a dipole-based representation of Φm upon assuming Φ̃m = 0 in (2.8).

From (2.8) and (2.20) one can derive the velocity of the non-uniform flow in which
the nth bubble of the infinite system is placed:

v′i(x) = v∗i − c(v∗i − v′i) +
∑
m6=n

1
2
R3w′mj ∇i∇j

(
1

rm

)
, (2.21)

rm = |x− xm|, i, j = 1, 2, 3.

Hereafter, v∗ is taken as the mean velocity of the liquid, v∗ = 〈v〉; w′m is the relative
velocity (2.9); and m is the sphere identification number. The summation for m is for
the interior of S∞(|x − xm| < r0). The repeated subscripts are indices for summation
from 1 to 3.

Relation (2.21) is the basis on which to write a set of simultaneous linear equations
for v′(xn):

v′i(xn) = v∗i − c(v∗i − v′i) +
∑
m6=n

1
2
R3w′mj ∇i∇j

(
1

rm

)
, x = xn,

w′n = un − v′(xn).

 (2.22)

Here, xn is the nth sphere centre.
From (2.8) and (2.19) the velocity field is

vi(x) = v∗i − c(v∗i − v′i) +
∑
m

1
2
R3w′mj ∇i∇j

(
1

rm

)
. (2.23)

Equations (2.21)–(2.23) are in agreement with similar relations obtained by Voinov
& Petrov (1975): equation (2.23) is the same as their formula (2.5). When comparing
with, Voinov & Petrov one should first take into account their formula (2.6), secondly
their note after (2.6), and thirdly assume R = const.

Consider the system in which the points xn form a regular lattice and, consequently,
w′ni does not depend on n. Then, due to symmetry,∑

m6=n
w′mj ∇i∇j

(
1

rm

)
= 0 at x = xn. (2.24)

From (2.22) and (2.24) we conclude that the mean velocity v∗ of the liquid is equal
to the external velocity at the sphere centre:

v∗ = v′. (2.25)

Here, the averaging symbol may be omitted. The formula (2.25) is in agreement with
a similar relation obtained by Voinov & Petrov (1975) in a different way for an
isotropic mixture of a liquid with bubbles.

The accuracy of (2.25) is the same as that of (2.21). If the second term in the series
(2.7) is taken into account, then we can obtain a more accurate formula than (2.21):

v′i(x) = v∞i +
∑
m6=n

R3

2
w′mj ∇i∇jr−1

m +
∑
m6=n

R5

3
∇i(r−5

m y
m
j y

m
k )∇kv′j(xm). (2.26)

Here, ∇kv′j(xm) is used to designate the value of ∇kv′j at x = xm as provided by (2.21),

v∞ = (1− c)v∗ + v′.
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Relation (2.26) is useful in estimating the accuracy of (2.21). If the lattice is regular,
then we use symmetry to obtain

∇kv′j(xm) = 0.

The second summand in (2.26) is zero. Therefore, the error of (2.21) or (2.22) for the
regular lattice is O(ε10), where ε = R/a. For disturbances to the regular lattice the
error of (2.21) and (2.22) is O(ε8).

2.3. Microscopic equations in bubble system dynamics

The dynamic equations for multiple spheres can be written on the basis of the equation
of motion for one sphere in the flow induced by the other spheres. Following Voinov
& Petrov (1975) it suffices to consider (2.21) and (2.22) together with the equation of
motion of a sphere, which in a non-uniform flow, is(

1
2
ρ1 + ρ2

) dun

dt
= ρ1

3

2

dv′n

dtv
+ (ρ2 − ρ1) g, (2.27)

where the subscript v symbolizes the convective derivative, ρ2 is the density of the
dispersed matter (here, the basic case is a system with ρ2 = 0), and g is the body
force. The equation is written on the basis of the usual expression (A 1) for the force
in the principal approximation, O(R3), when R is small. The Appendix provides a
refined relation accurate to within O(R5).

Consider the mean velocity of the mixture volume

vΣ = (1− c)v∗ + cū, (2.28)

where v∗ and ū are mean phase velocities. We can specify a mean velocity vΣ as
constant in space and time.

We would like to understand small-amplitude wave disturbances to the bubble
system uniform in the mean. Hereafter, let us assume that no body forces are acting –
that is, g = 0. The kinematic equations (2.21) and (2.22) include the mean velocity v∗
and the mean volumetric concentration c. They correspond to a large amount of the
mixture and are assumed constant in the sphere dynamics because the disturbance
wavelength Λ is much shorter than the diameter of this domain, Λ� r0.

Relations (2.27) with v′ from (2.21) and (2.22) generate a set of ordinary differential
equations which describe the motion of multiple spheres in a liquid and allow for
hydrodynamic interaction of these spheres. The equations are valid if ε is quite small
(ε = R/a). The error inherent in the kinematic equations is stated in § 2.2 above. The
error in the right-hand side of (2.27) is O(ε9) in the general case, see (A 14), and o(ε9)
if bubbles are in a regular lattice.

Our primary concern is to derive the disturbed motion equations in the principal
approximation for low c values.

3. Dynamic equations for small-amplitude disturbances to a periodic
bubble system

Assume that the spheres form an infinite periodic structure which moves unchanged
through a liquid. Let us consider small disturbances to this motion by using the linear
approximation. The undisturbed periodic structure has velocity u0, and the average
liquid velocity v∗ is specified. The primary challenge now is to describe the dynamics
of disturbances to the sphere centre coordinates,

δxni = xni (t)− xn0i(t). (3.1)
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Here, undisturbed values xn0i are linear temporal functions. We suppose that distur-
bances to the nth bubble coordinates δxni are small in comparison with the lattice
spacing:

|δxn| � a.

Let the vector function f(x, t) stand for the external velocity or acceleration. Use
δnf to denote a disturbance f at the sphere centre:

δnf = f(xn, t)− f0(x
n
0, t). (3.2)

Hereafter, the subscript 0 denotes unperturbed values of functions. For the linear
approximation we write

δnf = δn0f + δxni ∇if, (3.3)

where δn0f is the perturbation at the centre of the nth sphere in the unperturbed
structure,

δn0f = f(xn0, t)− f0(x
n
0, t). (3.4)

To write disturbed motion equations, we need to find the disturbance to the external
flow acceleration present in the right-hand side of (2.27).

Consider the derivative ∂/∂tu0 in the coordinate system xi fixed at the undisturbed
structure and write the convective derivative:

d

dtv
=

∂

∂tu0
+ (v′ − u0) · ∇. (3.5)

Because of symmetry of the regular lattice the undisturbed values of ∇iv′j are zero at
the nodes,

∇iv′0j = 0, x = xn; i, j = 1, 2, 3.

Using (3.2)–(3.5) we find the small disturbance to the acceleration of the non-uniform
(external) flow

δ
dv′

dtv
(xn) = δ0

∂v′

∂tu0
− (w0 · ∇) δ0v

′ − δxni (w0 · ∇)∇iv′0, (3.6a)

w0 = un0 − v′0(xn0) = u0 − v∗. (3.6b, c)

Here, the repeated index i is the summation variable; terms on the right-hand side of
(3.6a) are for the undisturbed centre xn0 of the sphere; (3.6c) is based on (2.25). The
disturbance to the relative velocity is

δwn = δun − δv′(xn), xn = xn0 + δxn. (3.7)

The disturbance to the external velocity v′(xn) is expressed via (2.22):

δv′(xn) =
R3

2
∇∑

m6=n
[∇k(−yms r−3

m )w0s δy
nm
k − δwns yms r−3

m ], (3.8)

x = xn, ym = x− xm, δynm = δxn − δxm; k, s = 1, 2, 3.

Here, indices n and m are either integers or triplets of integers corresponding to lattice
nodes.

Now we need to estimate δv′(xn) defined in (3.8). When ε→ 0, the right-hand side
of (3.8) is small:

|δv′(xn)| = O(ε3). (3.9)
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Since δv′j is small, relations (3.7) and (3.9) give

|δwn − δun| = O(ε3). (3.10)

Hence, we can assume δwm = δum in the sum of (3.8). Using this approximation
we find from (2.21) and (3.6)–(3.8) for the small disturbance to the external liquid
acceleration

δ
dv′

dtv
(xn) =

R3

2
∇∑

m6=n

(
−fmj d

dt
wmj + 2w0j δu

m
k ∇kfmj + w0pw0jδy

nm
k ∇p∇kfmj

)
, x = xn0,

(3.11)

where ∇ = ∂/∂x, fm = (x− xm)/r3
m, δu

n = d/dt(δxn).
Upon substituting (3.11) into (2.27) we obtain the disturbed motion equations for

the spheres:

K
d

dt
δuni = µni + βni + σni , (3.12)

µni = −R
3

2

∑
m6=n

[
∇i∇j−1

rm

]
d

dt
umj , (3.13)

βni = R3w0j

∑
m6=n

[
∇i∇k∇j−1

rm

]
δumk , (3.14)

σni =
R3

2
w0pw0j

∑
m6=n

[
∇i∇p∇k∇j−1

rm

]
δynmk , (3.15)

where x = xn0, rm = |x−xm|, δynm = δxn−δxm, K = (2ρ2 +ρ1)/3ρ1. For bubbles
K = 1/3. Hereafter, we replace w0 with w for brevity.

4. Added mass of a bubble in one-dimensional motion
Consider one-dimensional and spatially uniform motion of an infinite system of

bubbles in a liquid:

vΣ = vΣ(t), v∗ = v∗(t), ū = ū(t). (4.1)

Assume that the mixture microstructure has three orthogonal axes of symmetry. In
particular, this assumption is valid when the bubbles are in a cubic lattice. Then (as
shown in Voinov & Petrov 1975 and in § 2.2 above) the mean value of v throughout
the volume is the same as the mean value of v′ at centres. Also, it is obvious that the
mean values of velocities v′ and u are the same as their local values:

v∗ = v̄′ = v′, ū = u. (4.2)

From (2.27):

1

2

du

dt
=

3

2

dv′

dt
− g. (4.3)

Also, from (2.28), (4.1), (4.2), and (4.3):

1

2

(
1 +

3c

1− c
)(

du

dt
− d

dt
vΣ

)
=

dvΣ
dt
− g. (4.4)
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The coefficient 1 + 3c/(1 − c) on the left-hand side of (4.4) was initially introduced
Zuber (1964) and substantiated in many works (van Wijngaarden 1976b; Biesheuvel
& Spoelstra 1989; Wallis 1989, 1992; Sangani et al. 1991). The accuracy of the Zuber
coefficient is O(c10/3) for a regular lattice.

Let us use the symbol Z to denote the coefficient by which the added mass of a
bubble in the system of bubbles differs from the added mass of a single sphere in
unbounded liquid. Then the added mass coefficient m(c) (van Wijngaarden 1976a) of
the bubble in a dispersion is

m(c) = 1
2
ρ1VZ, (4.5)

where V is the sphere volume. The solution in Zuber (1964) corresponds to

Z =
1 + 2c

1− c = 1 + 3c+ O(c2). (4.6)

The added mass coefficient m(c) obtained in van Wijngaarden (1976a) for the
random state of a bubbly liquid corresponds to

Z = 1 + 2.78c, (4.7)

and that from Biesheuvel & Spoelstra (1989) and Kok (1988a) corresponds to

Z = 1 + 3.32c. (4.8)

Values of Z for waves in trains of bubbles and in spatial systems are discussed
below.

5. Waves in an infinite bubble system
Now we consider disturbances in one- and three-dimensional systems. In both

situations each bubble may be identified by its unique integer, m and n. However, for
the spatial system the identification would be better based on triplets of integers. The
undisturbed coordinates of sphere centres can be specified in terms of the spacing a,

xn0j = anj, j = 1, 2, 3. (5.1)

In the case of a cubic lattice the variable n stands for a triplet of integers

n1, n2, n3 = 0,±1,±2, . . . . (5.2)

Disturbances δxn = xn − xn0 are small (|δxn � a|) and described by the system of
linear equations (3.12)–(3.15).

The set of equations (3.12)–(3.15) is invariant in relation to translation along any
lattice axis by the lattice spacing a. Therefore, the set possesses a wave-like solution

xnj − xn0j = dj exp (λt+ in1γ1 + in2γ2 + in3γ3), (5.3)

where the real variables γj ∈ (−π, π), dj are initial (t = 0) wave amplitudes, and λ is
the amplitude growth exponent. The wave parameters γj are expressed in terms of
wavenumbers kj:

γj = akj, njγj = kjx
n
0j . (5.4)

The primary problem is to analyse the growth exponent λ for motion of one-
and three-dimensional structures when wave parameters γj (or wavenumbers kj) are
specified.
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6. Waves in bubble trains
Consider disturbances to an infinite bubble train that moves in an unbounded

liquid which is at rest at infinity. Assume that the train is oriented along the x1-axis:

n1 = 0,±1,±2, . . . ; n2 = 0, n3 = 0. (6.1)

(i) If the bubble train is moving along its own axis x1 with a velocity w, then it can
feature low-amplitude waves of two types.

(a) In waves of the first type the displacements are along the train (i.e. one-
dimensional movement):

δxn1 = deλt+inγ, δxn2 = δxn3 = 0. (6.2)

Here i is the imaginary unit, and γ ∈ (−π, π).
To derive the equation for λ, we substitute (6.2) into (3.13)–(3.15) and take into

account (6.1) and the equalities∑
m6=n

r−3
mneλt+imγ =

2

a3
eλt+inγa3, rmn = |xm1 − xn1|, a3 =

∞∑
l=1

cos lγ

l3
, (6.3)

∑
m6=n

xn1 − xm1
r5
mn

eλt+imγ = −2
i

a4
eλt+inγa4, a4 =

∞∑
l=1

sin lγ

l4
, (6.4)

∑
m6=n

1

r5
mn

{
eλt+inγ − eλt+imγ

}
=

2

a5
eλt+inγa5, a5 =

∞∑
l=1

1− cos lγ

l5
. (6.5)

The sum a3 governs the sign of the correction, Z − 1, to the added mass coefficient
of a single sphere:

Z = 1− 6ε3a3(γ), (6.6)

where

ε = R/a (6.7)

In the continuum limit (at γ → 0) the added mass is less than that for a sphere
in unbounded liquid (Z < 1). In the case of quite short waves (at |γ| > 1.45035) the
added mass is greater than that for a single sphere (Z > 1).

From (3.12)–(3.15) we obtain the characteristic equation

(K − 2ε3a3)λ
2 + 12iε3(w/a)a4λ+ 24ε3(w2/a2)a5 = 0, (6.8)

which has two imaginary roots. In the principal approximation with a small ε we
have

λ11 = ±i
w

a

(
ε3/2
√

24a5K−1 + O(ε3)
)
. (6.9)

Hence, the train in a longitudinal flow is stable to longitudinal perturbations. One-
dimensional motion of bubbles in a train looks like that of spheres connected by
springs.† By analogy, it can be assumed that one-dimensional disturbed motion in
a spatial system behaves in the same way. Below, in § 9, this hypothesis is proven.
Qualitatively, the effect may be explained by using a system with two spheres which
move one following the other in unbounded liquid. The mutual repulsion force of
the two spheres is known to monotonically increase as their separation distance

† The possibility of this effect in a train of bubbles was suggested by R. I. Nigmatulin.
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decreases (Basset 1961; Lamb 1932; Voinov 1969). The dynamics of an infinite train
is mainly governed by the interaction of neighbouring bubbles, which is similar to the
interaction of two spheres in unbounded liquid.

(b) Disturbances of the second type are displacements of spheres normal to the
axis of the train:

δxn1 = δxn3 = 0; δxn2 = d2e
λt+inγ, n = 0,±1,±2, . . . . (6.10)

The summands µ, β, and σ in (3.13)–(3.15) need to be written which corresponds to
(6.10), to give, from (3.12),

(K + ε3a3)λ
2 − 6iε3(w/a)a4λ− 12ε3(w2/a2)a5 = 0. (6.11)

Relation (6.11) gives

λ12 =
w

a

(
±ε3/2√12a5K−1 + O(ε3)

)
. (6.12)

This indicates that the train in a longitudinal flow is unstable with respect to transverse
disturbances.

(ii) Consider the motion of a train normal to its axis x1 and along the x2-axis:

w2 = w, w1 = w3 = 0.

Two situations might occur.
(a) The train may feature the longitudinal perturbations

δxn1 = d1e
λt+inγ, δxn2 = δxn3 = 0. (6.13)

Then from (3.12)–(3.15):

(K − 2ε3a3)λ
2 − 12ε3(w2/a2)a5 = 0, (6.14)

and we obtain two values of the exponent:

λ21 = ±ε3/2√12a5K−1(1 + O(ε3))
w

a
. (6.15)

It is interesting to note that in its principal approximation (6.15) is the same as
(6.12): λ12 = λ21. Hence, disturbances with identical values of γ in these two cases
grow at the same rate. It is clear that in both cases the instability is caused by the
Bernoulli effect.

We now determine the disturbances with the fastest growth. The maximum of the
real part of λ corresponds to the maximum of a5(γ). In accordance with (6.10) the
function a5(γ) reaches its maximum values at γ = ±π. This corresponds to the pairing
mode for which the wavelength is 2a. Note that the pairing mode is of importance
in the development of the instability of a single infinite row of point vortices in an
ideal liquid which were studied by von Kármán (1911, 1956); refer to Lamb (1932)
and Aref (1995).

(b) Transverse perturbations (i.e. displacements along the x2-axis) to the train
moving normal to its x1-axis (i.e. along the x2-axis) do not grow. The growth exponent
is purely imaginary:

λ22 = ±i
w

a
(ε3/2

√
24a5K−1 + O(ε3)). (6.16)
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Figure 1. Directions of one-dimensional disturbed motion of bubbles in a cubic lattice.

7. Waves in a cubic lattice of bubbles and coefficients of the dynamic
equation for a continuous medium

We next analyse linear waves in a cubic lattice of bubbles. A typical element of the
system is sketched in figure 1.

Assume that the unperturbed velocity vector w is oriented along one of the lattice
symmetry axes. In this case a one-dimensional solution to the equations of the motion
is a possibility.

In order for the wave-like disturbances (5.3) to correspond to one-dimensional
motion of the bubble system, the vectors of the perturbation to the coordinates of
each bubble (i.e. the real part of δxn) should be collinear to the velocity vector w. The
motion is symmetric, and without restricting the general character of the model we
can assume the initial amplitudes dj to be real numbers. Then the one-dimensional
motion condition is formulated as follows: vectors d , γ, and w are collinear.

dj = bwj, γj = hwj, (7.1)

where b and h are real numbers and j = 1, 2, 3.
The problem is to establish the dependence of the exponent λ on wave parameters

γj . Therefore we should first analyse the summands µ, β, and σ in (3.12). The summand
µ makes it possible to find the correction to the added mass of the sphere involved
in wave motion.

7.1. Added mass of a sphere

The added mass of a sphere in a wave motion differs from that in an unbounded
liquid. By writing the mth sphere’s acceleration as

d

dt
umj = λ2dj exp (λt+ imhγh), (7.2)

we find from (3.13) and (5.3) that

µni = −cλ2di exp (injγj + λt)α0, (7.3a)
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α0 =
3

8π

∑
y 6=0

[
1− 3

(y · e0)
2

r2

]
cos (γy · e0)

r3
, (7.3b)

e0j = γj/γ, γ = |γ|; yj = 0,±1,±2, . . . ; r = |y|
(e0 is the unit wave vector.) Hence, the corrected multiplier to the added mass
coefficient in accordance with (3.12), (4.5) and (7.3) is

Z = 1 + 3cα0. (7.4)

Obviously, for (7.4) to conform to the Zuber coefficient (4.6) in the continuum model
we must have α0 = 1.

7.2. Contribution to (3.12) from coordinate disturbances

Consider now the sum σ which defines the contribution to (3.12) from bubble
coordinate disturbances. To compute the sum σ on the basis of (3.15), take into
account that

δynmk = dk exp (injγj + λt)[1− exp (i(mj − nj)γj)]. (7.5)

Due to flow symmetry the summand σ in (3.15) is proportional to the initial
amplitude: σnj = Bdj . The coefficient B will be found by using (7.1) and after
computing the scalar product σnj dj ,

σni = cw2a−2di exp (injγj + λt)α1, c = 4
3
πR3a−3, (7.6a)

α1 =
3

8π

∑
y 6=0

[
−9 + 90

(y · e0)
2

r2
− 105

(y · e0)
4

r4

]
1− cos (γy · e0)

r5
, (7.6b)

e0j = γj/γ; yj = 0,±1,±2, . . . ; r = |y|.
Summation is over lattice nodes. In connection with the analysis of long-wave motions
we introduce the coefficient

A1 = α1/γ
2 (7.7)

and re-write (7.6) to obtain

σni = c(γ2/a2)w2di exp (injγj + λt)A1. (7.8)

7.3. Contribution to (3.12) from velocity disturbances

Lastly, the summand β in (3.12) represents the effect of the sphere velocities on
the force. Determine βni in accordance with (3.14) for one-dimensional motion. By
calculating the scalar product βni di we obtain

βni = icwa−1λdi exp (injγj + λt)α2, w · e0 > 0, (7.9)

α2 =
3

4π

∑
y 6=0

[
9− 15

(y · e0)
2

r2

]
(y · e0)

sin (γy · e0)

r5
, (7.10)

yj = 0,±1,±2, . . . ; r = |y|.
Note that in the case of w · e0 < 0 the sign in (7.9) is opposite. However, then the

exponent λ is replaced with its complex conjugate value; so it suffices to assume that
w · e0 > 0.
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To analyse long waves, we need to also write β in terms of the coefficient

A2 = α2/γ, (7.11)

βni = ic(γ/a)wλdi exp (injγj + λt)A2, w · e0 > 0. (7.12)

7.4. Growth exponent for one-dimensional waves

From (3.12)–(3.15), (7.5), (7.8), and (7.12) two versions of the equation for the exponent
λ appear:

(K + cα0)λ
2 = c(γ/a)2w2A1 + ic(γ/a)wA2λ, (7.13a)

(K + cα0)λ
2 = ca−2w2α1 + ica−1wα2λ. (7.13b)

In the principal approximation for small c the growth exponent is

λ = ±(w/a)
√
cα1/K = ±(γ/a)w

√
cA1/K. (7.14)

For bubbles K = 1/3. If α1 > 0 (and, correspondingly, A1 > 0) then the system is
unstable to one-dimensional disturbances, whereas it is stable if α1 < 0 (orA1 < 0).

7.5. The continuum limit

The above coefficients enable us to write linearized dynamic equations (3.12)–(3.15)
for one-dimensional waves as follows:

( 1
2
ρ1(1 + 3α0c) + ρ2)

dun

dt
= 3

2
cρ1(A1w

2k2 δxn + A2wik δun), (7.15)

where k = γ/a.
In the limiting case of long one-dimensional waves (γ → 0) a change in concentra-

tion c can be related to the displacement δx:

δc = −ikc0 δx, ik(. . .) =
∂

∂x
(. . .), δx = δx · e0,

where e0 is the unit wave vector. With this, equation (7.15) corresponds to

( 1
2
ρ1(1 + 3α0c) + ρ2)

du

dt
= 3

2
A1ρ1w

2 ∂c

∂x
+ 3

2
A2ρ1wc

∂u

∂x
. (7.16)

This is the equation for the continuum description of the two-phase system.

7.6. Symmetry relations for wave dynamics coefficients

Our intention is to demonstrate that equation (7.13) holds in certain situations with
two-dimensional disturbed motion. One-dimensional motion is symmetric, so it does
not depend on transverse disturbances to the bubble coordinates. The latter are not
related to longitudinal disturbances and have a separate equation system.

Further, we will also deal with transverse waves for which

d · k = 0, k = hw, (7.17)

where h is a real number. This disturbance is similar to the type-(i)(b) wave in a train
(see § 6). Let us assume that each of the vectors w and d is collinear to one of the
lattice vectors ej . By introducing e∗ as the unit vector directed along d , we have

d = ±|d |e∗, e0 · e∗ = 0. (7.18)

Then we re-write (3.15) in the following form:

σn∗1 = cw2a−2di exp (injγj + λt)α1∗, (7.19a)
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αi∗ =
3

8π

∑
y 6=0

[
−3 + 15

(y · e0)
2 + (y · e∗)2

r2
− 105

(y · e0)
2(y · e∗)2

r4

]
1− cos (γy · e0)

r5
.

(7.19b)

Assume that e0 = e1, and write the expression (7.19b) for α1∗ for two cases:

e∗ = e2 and e∗ = e3. (7.20)

Sum the expressions for α1∗ and the expression (7.6b) for α1; then transform the sum
on the basis of the identity

y2
1 + y2

2 + y2
3 = r2.

The transverse wave coefficient (7.19a) may now be expressed through (7.6b):

α1∗ = − 1
2
α1. (7.21)

The coefficient A1∗ is based on (7.7):

A1∗ = α1∗/γ2 = − 1
2
A1. (7.22)

Note that the difference in signs of coefficients α1 and α1∗ points to the fact that one
of them is positive and, in accordance with (7.14), corresponds to instability.

By analogy with (7.21), we proceed from (3.13), (7.3b) and (3.14), (7.10) to find

α0∗ = − 1
2
α0, α2∗ = − 1

2
α2. (7.23a, b)

These symmetry relations between coefficients of dynamics of longitudinal and trans-
verse disturbances make it possible to deal with α0, α1, and α2, without involving other
entities.

In the continuum limit the expression (7.23a) suggests that the transverse wave
added mass coefficient differs greatly from the Zuber value (4.6):

Z = 1− 1.5c. (7.24)

Consider a longitudinal wave with the wave vector k orthogonal to the velocity w:

d = bk, w · k = 0. (7.25)

Here b is a real number. Let each of the vectors w and k be collinear to one of
the lattice vectors. The wave is similar to the type-(ii)(a) wave in a train (see § 6).
The combination (7.25) resembles (7.17) in that d · w = 0. Therefore, the dynamic
coefficients for the wave will be obtained by replacing e0 with e∗ in sine or cosine
functions in formulas for α0∗, α1∗, and α2∗. In this case the relation (7.23a) for α0∗
becomes the formula for α0, the formula (7.21) for α1∗ remains unchanged, and the
formula (7.23b) for α2∗ gives us zero. So the coefficients for the (7.25) wave are

α̃0 = α0, α̃1 = α1∗ = − 1
2
α1, α̃2 = 0. (7.26)

The symmetry relations (7.26) are similar to those which relate dynamic coefficients
for type-(ii)(a) waves and other waves in trains (see § 6). With this, stability is defined
by the same coefficient α1∗ as for the transverse wave. However, unlike the latter, the
added mass coefficient in the continuum model is described by the Zuber equation,
owing to the equality α̃0 = α0.

Now address the problem of one-dimensional motion stability while considering
one-dimensional perturbations only. This is of interest in connection with the one-
dimensional theory of two-phase flows.
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Figure 2. The effect of the wave parameter γ on the coefficient α0, governing added mass of a
bubble in the system. Curves are shown for three orientations of the relative velocity vector w, (i),
(ii) and (iii), and α0 is given by equation (7.3b)

8. Wave dynamics in a bubble lattice: the role of velocity orientation
The coefficients in (7.13) which defines λ depend on ej · e0 where ej are lattice

vectors and e0 is the wave unit vector collinear to the undisturbed velocity w.
One-dimensional movement occurs when
(i) e0 is collinear to one of lattice vectors,
(ii) e0 is direct along the cube face diagonal, and
(iii) e0 is directed along the main cube diagonal.

Consider these situations separately. For each of them the scalar product y ·e0 included
in (7.6b) etc. may be written more specifically.

(i) The sphere velocity is directed along the lattice vector e1 (figure 1). The total
number of these axes is only three. For these cases we have in (7.6b):

y · e0 = y1. (8.1)

(ii) A wave along a short cube face diagonal. In this case there is a possible six
lines (figure 1). If we choose the diagonal in the plane y3 = 0, then

y · e0 = (y1 + y2)/
√

2. (8.2)

(iii) A wave runs along one of the four main internal diagonals (figure 1). Then

y · e0 = (y1 + y2 + y3)/
√

3. (8.3)

Relations (7.3b) and (8.1)–(8.3) were used to compute the coefficient α0 which
defines the correction multiplier Z to the added mass coefficient of a bubble in a
system of bubbles.

Z = 1 + 3cα0. (8.4)

The results are depicted in figure 2.
The continuum limit (γ → 0) provides the single values, α0 = 1, corresponding to
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Figure 3. Coefficient α2 of equation (7.13b) vs. wave parameter γ for three orientations of the
relative velocity vector w.

the Zuber solution (4.6). From the plot it is clear that the solution for the short-wave
range may differ substantially from the Zuber solution. For type (i) waves directed
along the lattice vector the difference between α0 and 1.0 does not exceed 16%. But
the difference may be large if the waves along diagonals of the elementary cube are
considered. For example, for type (iii) waves (running along the main diagonal) the
coefficient α0 is zero at the minimum point. It is interesting to note that α0(γ) values
are non-negative for all three types of waves, and the added mass coefficient is greater
than that for a single sphere. This constitutes the qualitative difference with waves in
trains (see § 6) for which the correction to the added mass may have any sign. The
extreme values of α0 in figure 2 correspond to the pairing mode considered below.

Also, relation (7.10) was utilized to evaluate the coefficient α2 – see figure 3. Curves
(i) to (iii) correspond to types (i) to (iii) above.

Results of computing coefficients α1∗ and α1 using (7.19b), (7.6b), and (7.10) taking
into account (8.1)–(8.3) are shown in figure 4. Curve (i) is for the transverse wave
coefficient α1∗ in the case of movement along a cube edge. Curve (ii) represents
the function α1(γ) for a one-dimensional wave when the velocity is along a face
diagonal. Curve (iii) is α1(γ) for a one-dimensional wave when the velocity is along
the main diagonal. In all situations the coefficients α1 (or α1∗) are positive, which means
instability. In case (i) the instability is with respect to transverse waves, whereas the
system is stable with respect to one-dimensional perturbations.

Of particular interest are the maximum values of the α1(γ) coefficient; these corre-
spond to the fastest growing one-dimensional disturbances in the principal approxi-
mation (at low concentration c). From figure 4 it is clear that the extremes of α1(γ)
occur at the following values of γ:

(i) γ = π, (ii) γ = π
√

2, (iii) γ = π
√

3. (8.5)

The extremes correspond to those wave-like disturbances of the lattice for which
the disturbance velocities of every pair of neighbouring bubbles are symmetric (this
is the pairing mode). This limiting phenomenon in the collective dynamics of bubbles
has its ‘counterpart’ in the dynamics of vortical systems – the predominance of the
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Figure 4. The effect of the wave parameter γ on the coefficient α1, governing stability of the system
of spheres. Curves are shown for three orientations of the relative velocity vector w: (ii) and (iii)
are for α1 given by equation (7.6b); (i)∗ α∗ given by equation (7.21). Curve (iv) is described in § 9.

pairing mode in the perturbed single row of vortices (von Kármán 1911, 1956; Lamb
1932; Aref 1995).

When the wave is type (i) and the velocity w is along a lattice axis the pairing mode
does not develop and oscillations take place along one of the lattice axes. However,
in this case the maximum growth rate is attained by the transverse wave. For type (ii)
or (iii) waves (along one of diagonals of the elementary cube (figure 1)) the maximum
growth rate corresponds to symmetric motion of bubbles within pairs.

Thus, the system of bubbles is stable to one-dimensional perturbations for move-
ment along three lines in the cubic lattice and unstable to one-dimensional pertur-
bations along ten lines. This means that the one-dimensional instability dominates
one-dimensional stability amongst the 13 possible lines of one-dimensional motion.
That property of spatial motion is a notable contrast to the stability (described in
§ 6) of one-dimensional motion in a train.

It should also be emphasized that, unlike trains, the question of one-dimensional
stability of spatial structures cannot be given a certain answer. What is important is
the derivation of three models of one-dimensional motion for the same cubic lattice.
The dynamics is shown to depend significantly on the orientation of the velocity w.

In order to analyse long waves in a lattice, relations (7.6b), (7.8), (7.19b), and (7.12)
were employed to calculate coefficients A1∗(A1∗ = α1∗/γ2), A1, and A2 which are present
in (7.13)–(7.16). Curves (ii) and (iii) in figure 5 provide values of A1 for cases (ii) and
(iii). Case (i) corresponds to curve (i)∗ (for A1∗ values) and curve (i) (for A1 values).

The limiting case of extremely long waves was also studied. The ultimate values as
γ → 0 are as follows:

(i) A1 = −1.72, A2 = −1.02, A1∗ = 0.86; (8.6a)

(ii) A1 = 0.986, A2 = 1.756; (8.6b)

(iii) A1 = 1.493, A2 = 2.685. (8.6c)
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Figure 5. Coefficient A1 of continuum equation (7.16) vs. wave parameter γ for various
orientations of the relative velocity vector w, described in the text; curve (iv) is described in § 9.

These values lead us to the conclusion that unusual properties of the one-
dimensional short waves take place in the continuum limit. To describe wave be-
haviour in a lattice, three models could be used. Since there is no unambiguous
solution to the stability problem, the one-dimensional stability of the cubic lattice
does not correlate with the usual mean values for two-phase media. The key part
here is played by the motion orientation factor, not accounted for in conventional
equations of two-phase system dynamics.

9. Dynamics of waves in lattices: comparison with one-dimensional theory
for two-phase flows

Consider the continuum model (Zuber 1964; Wallis 1969; van Wijngaarden 1976b;
Nigmatulin 1979, 1991; Arnold et al. 1989) of one-dimensional two-phase flow. Taken
together with the continuity equations, the equations of motion for the dispersed phase
with no dissipation at low concentration c would be

ρ2

du

dt
=

3

2
ρ1

dv

dt
− 1

2
ρ1

du

dt
,

∂c

∂t
+ ∇(cu) = 0, −∂c

∂t
+ ∇{(1− c)v} = 0.

If disturbances are small and can be described as

v = v0 + v1e
ikx+λt, u = u0 + u1e

ikx+λt, c = c0 + c1e
ikx+λt,

then we have (
1
2
ρ1(1 + 3c) + ρ2

) du

dt
=

3

2
ρ1w

2 ∂c

∂x
+ 3ρ1wc0

∂u

∂x
. (9.1)

This equation is analogous to (7.16). From (9.1) it follows that

(K + c0)λ
2 = c0k

2w2 + 2ikc0wλ,
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and we have the positive growth exponent

λ ≈ |wk|√c/K.
This corresponds to instability of two-phase flow. Such an instability is known in
one-dimensional theories of two-phase flows. A similar effect was noticed by van
Wijngaarden (1976b).

It would be instructive to compare, on one hand, the instability of one-dimensional
flow and, on the other hand, the above theory of linear waves in a periodic bubble
structure. In accordance with (9.1) the coefficients present in (7.16) are

A1 = 1, A2 = 2. (9.2)

The coefficient α1 = γ2 is depicted with the dashed line (iv) in figure 4, and the
coefficient A1 = 1 with the straight line in figure 5. Values in (9.2) compare well with
(8.6b) for the case of movement along a cube face diagonal (figure 1). The pattern is an
example flow for which an accurate computation within the potential flow framework
gives almost the same wave growth exponent as the one-dimensional theory of two-
phase flows. Note that case (i) in § 8 is the other example of one-dimensional motion
(along the lattice vector) with no amplitude growth.

In the set of bubbles in a cubic lattice the total number of directions of one-
dimensional motion in the lattice in which motion is unstable (with respect to one-
dimensional disturbances) exceeds the total number of directions for which motion
is stable; this is a principal feature of the two-phase medium model with relative
movement of the phases, which is described within the potential flow framework.

10. Bubble lattice stability in a viscous liquid
Above, we have considered bubbles in an inviscid liquid. Now the short-wave theory

will be generalized to cover a system of bubbles in a viscous liquid. The mathematics
developed above applies to the disturbed motion of a system of spherical bubbles at
large Reynolds numbers. In the case of low Reynolds numbers we would employ a
different approach (Voinov 1997), but at high Reynolds numbers the velocity field
can be close to potential.

From Levich (1962) and Moore (1963); see also Batchelor (1967) it is known
that viscous flow around a spherical bubble at large Reynolds numbers is close to
potential. This fact is the basis of the first contribution to the dynamics of a system
with multiple bubbles in a low-viscosity liquid (Golovin 1966) and of a number of
subsequent works (Voinov & Petrov 1975; van Wijngaarden & Kapteyn 1990; Sangani
& Didwania 1993b). Work on bubble dynamics at high Reynolds numbers is reviewed
in Voinov & Petrov (1976). Viscous drag during the movement of two bubbles at high
Reynolds numbers has been studied in Golovin (1966), Voinov (1971), Kok (1988b)
and van Wijngaarden & Kapteyn (1990).

This explanation that follows is based on equations in Voinov & Petrov (1975). In
the preceding text a version of the equations for inviscid liquids has been used. To
allow for viscosity, (2.27) should be replaced by (3.9) from Voinov & Petrov (1975):

du

dt
= 3

dv′

dt
− 2g− 2

τ0

(u− v′), τ0 =
R2

9ν
, (10.1)

where g is the body force and ν is the kinematic viscosity. The τ0 parameter in (10.1)
has the dimension of time and corresponds to the fact that tangential stress over a
sphere is zero, and the drag of a bubble is described by the formula from Levich
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(1962). Equation (10.1) corresponds to the following equation of disturbed motion of
the nth bubble in the system:

d δun

dt
= 3δ

dv′n

dt
− 2

τ0

(δun − δv′n), (10.2)

where the external velocity disturbance δv′n is governed by (3.8). As stated above, we
can assume that δw = δu in the sum in (3.8). Relations (3.11)–(3.15) and (10.2) may
be used to write

d δun

dt
= 3(µn + βn + σn)− 2

τ0

(δun − δv′n), dδxn

dt
= δun. (10.3)

Substitute the wave-like solution (5.3) into the disturbed motion equations (10.3)
and (3.13)–(3.15). By using (3.8) we then obtain

λ δv′nj (xn) = µnj + 1
2
βnj , (10.4)

where µnj and βnj are from (3.13) and (3.14).
Consider a system with one-dimensional waves. Substitute µnj and βnj from (7.3)

and (7.9) into (10.4) to describe δv′n in terms of δun and δxn. Then, the disturbance
to the relative velocity of the nth bubble is

δun − δv′n(xn) = (1 + α0c) δu
n − iw

2a
cα2 δx

n, (10.5)

where w is undisturbed relative velocity. It is valid not only for one-dimensional
waves but also for transverse waves in the case stated in § 7.6. In this situation the
coefficients α0∗ and α2∗ are from (7.23a, b). The formula (10.5) is also suitable for
describing longitudinal waves such as in (7.25). Note that here the disturbed motion
is not one-dimensional. The 1 + α0c coefficient in the first term in (10.5) is similar
to the coefficient Z = 1 + 3α0c governing the added mass of a bubble in a system.
In the continuum limit we have α0 = 1 for one-dimensional waves, and the added
mass is described by Zuber’s solution (4.6). Hence, in the continuum limit, the first
summand on the right-hand side of (10.5) for one-dimensional waves is similar to
Zuber’s solution.

The second summand in the right-hand side of (10.5) is due to the deformation of
the lattice by the wave.

We now analyse now the growth exponent λ in (5.3) for one-dimensional waves.
From (10.3) and (10.5):(

1
3

+ cα0

)
λ̃2 =

[
− 12

εRe
(1 + cα0) + icα2

]
λ̃+ cα1 + 6ic

α2

εRe
. (10.6)

Here the non-dimensional exponent λ̃ and the Reynolds number Re are

λ =
w

a
λ̃, Re =

2wR

ν
. (10.7a, b)

Equation (10.6) has the solution

λ̃ =
3

2Z

{
−b+ icα2 ±

√
(b− icα2)2 + 4

3
cZ

(
α1 +

6iα2

εRe

)}
, (10.8a)

b =
12

εRe
(1 + cα0), Z = 1 + 3α0c. (10.8b, c)
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It contains general information on the effect of viscosity on the dynamics of one-
dimensional disturbances. Dependence of λ̃ on Reynolds number, (10.8a), was ana-
lysed to establish the following theorem: if a system with low viscosity (Re→∞) has
an exponent with positive real part, then a system with a finite Reynolds number also
has an exponent with positive real part.

From this theorem it follows that all symmetric motions in a system of bubbles
in inviscid liquid which are not stable under one-dimensional disturbances will also
be unstable thereunder in a viscous liquid. The conclusion about the dominance of
one-dimensional instability over one-dimensional stability remains in force. Lastly, the
major feature is that the conclusion about the crucial dependence of one-dimensional
stability on orientation of the relative velocity of phases is general and valid for any
viscosity.

An interesting subproblem is to determine the values of parameters which corre-
spond to the inviscid model (at large Reynolds numbers). From § 7 and § 8 it follows
that α1 is proportional to γ2, with their multiplier being about 1.0; therefore, in (10.8a)
the viscosity contribution can be neglected if

b� γc1/2 or c5/6γRe� 20. (10.9)

Clearly, if the wavelength is quite large (in the limit γ → 0) then (10.9) may fail at any
Reynolds number. Now we need to estimate the role of viscosity in typical conditions.
In bubbly liquids the usual Re value is 100. So, if concentration is a few percent, then
(10.9) is valid if γ � 1. However, γ ∼ 1 (or less), so viscosity is important.

Viscosity influences the system behaviour greatly if b ∼ γc1/2. The growth exponent
may be obtained for b� γc1/2, when the role of viscosity is significant:

λ̃ ≈ cb−1α1 + 1
2
icα2. (10.10)

If α1 > 0, then this equation reflects the retardation of instability development by
viscosity.

11. Summary and conclusions
(i) The short waves in a periodic structure of bubbles that moves steadily through

an inviscid liquid have been theoretically found and studied. The volumetric concen-
tration of bubbles is assumed to be low. The behaviour of short waves represents
information on the dynamic behaviour of the two-phase system. The continuum limit
for short-wave solutions provides models useful for understanding the continuum
description of two-phase media.

(ii) One-dimensional waves in a periodic system of bubbles have been studied.
The behaviour of one-dimensional disturbed motion depends on the structure type,
which could be linear or spatial (a train or a three-dimensional structure). In a
train the one-dimensional wave amplitude does not grow, although the train is not
stable. This important property of trains is shown not to apply to the general case of
one-dimensional disturbed motion in a spatial structure.

(iii) For a cubic lattice three models describing one-dimensional disturbed motions
characterized by various dynamic coefficients have been proposed. Wave behaviour
crucially depends on the type of model. Only in the continuum limit do all three models
provide identical values of the added mass coefficient. Values of the stability-governing
coefficient differ substantially. Therefore, knowledge of the mean characteristics of a
bubbly liquid does not allow one to conclude whether the relative motion of phases
is stable to longitudinal disturbances directed along the relative velocity direction.
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Conditions under which the added mass coefficient for a bubble in a wave is
notably different from Zuber’s value have been found. This occurs for short one-
dimensional waves, with the difference depending on the wave type (see figure 2).
Also, the difference is characteristic of transverse waves and seen in the continuum
limit.

(iv) The orientation of the relative velocity is the principal governing factor in wave
dynamics for periodical systems. The orientation defines the type of model required
to describe one-dimensional disturbed motion. The role of the orientation is clearly
seen in the dynamics of one-dimensional disturbances, which are possible when the
relative velocity is along one of the symmetry axes.

The motion of a cubic lattice of bubbles along a lattice vector is stable with respect
to one-dimensional wave-like disturbances. Oppositely, the motion along a cube face
diagonal or along a main diagonal is unstable to those disturbances. Consequently,
the one-dimensional motion is stable to one-dimensional disturbances for only three
lines in the lattice, whereas no stability is seen for ten lines.

(v) The equations of the continuum limit that correspond to the case of one-
dimensional waves have been analysed. For motion along one of the cube face
diagonals the coefficients of the continuum equation are shown to be almost the
same as those for the previously known version of the one-dimensional two-phase
flow equations. A model example of instability of steady-state flow is found, which is
similar to the instability revealed by van Wijngaarden (1976b).

(vi) The influence of a small liquid viscosity on disturbance dynamics in a stationary
bubble system was studied on the basis of the dynamic equations in Voinov & Petrov
(1975). It has been found that instability of movement along symmetry axes (with
respect to one-dimensional disturbances) of the bubble system dominates stability.
When allowing for the liquid viscosity, the wave amplitude growth exponent depends
significantly on orientation of the phase relative velocity, as in the case of an ideal
liquid.

(vii) For the short-wave theory under consideration a quite high accuracy may
be attained by using the usual equation describing the force that acts on a small
sphere in a non-uniform flow. A refined formula (taking into account a higher order
with respect to the sphere radius) is derived in the Appendix. According to the new
formula, the bubble acceleration can differ substantially from that in a uniformly
accelerated flow; in the latter case the acceleration is thrice that of the liquid.

The author is grateful to Professor V. V. Pukhnachev and Professor A. A.
Gubaidullin for discussions. Special thanks are to Professor L. van Wijngaarden
for his useful comments on the article.

This work was supported by NASA under Contract NAS 15-10110.

Appendix. Refined equation for the force on a small sphere in a
non-uniform flow

Consider a small sphere in a non-uniform flow with no vortices present. A body
placed in a flow may be assumed to be small if its radius R is small relative to
the distance l0 to an external boundary of the flow: l0 � R. Previous equations for
computing the force F applied to the body by a non-uniform potential flow rely
upon representing the flow in terms of both the velocity at the body centroid and
derivatives of the velocity; for example see Voinov (1973), Voinov & Petrov (1973),
and van Wijngaarden (1976a). Re-write the usual simplified equation for the force
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applied to a sphere with a constant volume (V = const),

F = ρ1V

(
3

2

dv′

dt
− 1

2

du

dt
− g
)
. (A 1)

Our main interest is to find a more general equation than (A 1) for hydrodynamic
force.

It is known that the motion of a system of bodies in ideal liquid with no vortices
can be described through the Lagrange equations (Thomson & Tait 1867; Lamb
1932; Birkhoff 1960). For a small body in a non-uniform potential flow we know the
exact Lagrange function (Voinov & Petrov 1973; Voinov et al. 1973) that defines the
hydrodynamic reaction on the body:

L =
ρ

2

∫
Ω

|v − v′|2 dτ−
∫
V

p′ dτ. (A 2)

Here, v′ is the liquid velocity in the specified non-uniform velocity field if the small
body is absent; v is the liquid velocity disturbed by the body; p′ is the pressure in the
non-uniform field v′; dτ is the volume element; Ω is the domain outside the body; and
V is the domain occupied by the body. At some distance from the body the velocity
field is not disturbed:

v − v′ → 0, r/R →∞.
The hydrodynamic force Fi acting on the sphere is described by the Lagrange

equation

d

dt

∂L

∂q̇i
− ∂L

∂qi
= −Fi, (A 3)

where qi is position of the sphere centre, and dot symbolizes differentiation with
respect to time.

The well-known equation (A 1) is a simple consequence of (A 2) and (A 3) in the
main approximation with respect to small R values (Voinov & Petrov 1973; Voinov
et al. 1973).

For a sphere the present author has derived independently the force equation,
proceeding from the expression for pressure over the sphere (Voinov 1973). However
to derive the refined relation, we shall not consider this alternative approach because
using (A 2) ensures significant saving in transformations.

Because the sphere radius R is small, the potential of velocity v′ in a vicinity of the
sphere may be presented as a Taylor’s series (Voinov 1973):

Φ′ =

∞∑
n=0

1

n!

∂nΦ′

∂xi∂xj . . . ∂xk
yiyj . . . yk, yi = xi − qi, v′ = ∇Φ′. (A 4)

Here, the derivatives are taken at the point x = q.
If we use only three terms in the expansion (with a linear relation between the vel-

ocity and the coordinates) then the flow is described by five independent components
from the nine in ∇v′. This local representation corresponds to the principal force
approximation accurate to O(R3). In the higher approximation we must describe Φ′
with the use of four expansion terms. Compared with the basic problem, this adds a
further seven independent components from the twenty seven in ∇∇v′.

For the potential Φ in the presence of the sphere conditions (2.2) can be neglected
and

Φ− Φ′ → 0 at r/R →∞.
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This problem for the Laplace equation is solved by equation (1.3) in Voinov (1973);
in our problem with R = const. becomes

Φ = − R
3

2r3
yiui +

∞∑
n=0

1

n!

(
1 +

nR2n+1

(n+ 1)r2n+1

)
∂nΦ′

∂xi∂xj . . . ∂xk
yiyj . . . yk, (A 5)

where ui = q∗i and r = |y|. Correspondingly, the velocity is

vl = − ul R
3

2r3
+

3R3

2r4
uiyiyl +

∞∑
n=1

n

n!

{(
1 +

nR2n+1

(n+ 1)r2n+3

)
δil

− 2n+ 1

n+ 1

R2n+1

r2n+3
xixl

}
∂nΦ′

∂xi∂xj . . . ∂xk
yj . . . yk. (A 6)

Here, δil is Kronecker’s delta function. For the sphere (at r = R) relations (A 5) and
(A 6) yield

Φ− Φ′ = − 1
2
wiyi +

1

3

∂v′i
∂xj

yiyj + Φ3

∣∣∣∣
r=R

+ O(y4), wi = ui − v′i , (A 7)

vl − v′l = −wi
(

1
2
δil − 3

2

yiyl

R2

)
+

(
2
3
δil − 5

3

yiyl

R2

)
∂v′i
∂xj

yj + (∇lΦ3)

∣∣∣∣
r=R

+ O(y3), (A 8)

where Φ3 = O(y3) at r = R; the potential Φ3 is a linear form of ∇i∇jv′k . The first
integral in (A 2) is equal to a surface integral:

1
2
ρ

∫
Ω

|v − v′|2dτ = 1
2
ρ

∫
S

(Φ− Φ′)(vj − v′j)nj dS. (A 9)

From (A 7)–(A 9) we have, for small R values,

1
2
ρ

∫
Ω

|v − v′|2 dτ = 1
4
ρV |u− v′|2 + 1

15
ρVR2∇jv′k∇jv′k + O(R7). (A 10)

There is no contribution from Φ3:

T3 = Λijk`(ui − v′i)∇j∇kv′l , Λijkl = VR2C(δijδkl + δikδjl + δilδjk),

where the value of C is of no importance. The sum T3 is zero because ∇j∇jv′l =
∇j∇kv′k = 0.

We expand p′(x) as a Taylor series at the point x = q and substitute the series in the
second integral of (A 2). Upon evaluating the integral and using the Cauchy–Lagrange
integral we obtain ∫

V

p′dτ = p′V − 1
10
ρVR2∇jv′k∇jv′k + O(R7). (A 11)

Substitution of (A 9) and (A 11) into (A 2) leads us to

L = 1
4
ρV |u− v′|2 − p′V + 1

6
ρVR2∇jv′k∇jv′k. (A 12)

In accordance with (A 3) and (A 12) the force applied to the sphere becomes

F = ρ1V

(
3

2

dv′

dt
+ 1

3
R2∆

dv′

dt
− 1

2

du

dt
− g
)
. (A 13)

Here, ρ1 is the liquid density; u is the sphere velocity; and V is the sphere volume
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(V = const). This formula differs from the usual (A 1) by the summand with the
Laplacian of liquid acceleration. The formula (A 13) includes some new information
about the force in non-uniform flow. From Birkhoff (1960) it is known that gas
bubble acceleration in a uniform flow is thrice the liquid acceleration. According to
(A 13), the bubble acceleration in a non-uniform flow may differ significantly from
that value. It may occur, for example, at a critical point (v′ = 0) of a non-uniform
flow.

The force expression (A 13) does not contain a contribution (behaving as O(R6))
from an external flow disturbance at a large distance from the small constant-radius
sphere. The contribution cannot be introduced while using the concept of a body
in non-uniform flow. Therefore, (A 13) cannot be refined. It is the expression of the
highest possible accuracy for systems with constant-radius spheres.

If the sphere radius is variable, then it is easy to complement (A 13) with the relevant
summand. However, we shall not do this because, for R 6= const, the contribution of
far boundaries is O(R5), the order of behaviour of the second summand in (A 13).
This contribution cannot be taken into account in the general form; therefore, in a
system with a variable sphere the maximum accuracy is ensured by the usual general
formula (A 1) complemented with the term (ρ1/2)(v′ − u)dV/dt. In Voinov (1973) the
radius varies, so (A 13) was not discussed.

If we deal with a system in which the neighbouring bubbles are quite far from
one another (so that R/a = ε � 1) then the second summand in (A 13) is a small
correction. Indeed, we may use (2.21) and (2.22) to estimate the order of the second
summand in brackets in (A 13):

1
3
R2

∣∣∣∣∆dv′dt
∣∣∣∣ = 1

3
R2 |∆(v′ · ∇)v′| = O(ε9). (A 14)

The first summand in brackets in (A 13) is O(ε3). Therefore, when utilizing (2.21) and
(2.22) together with (A 13), the term ∆(dv′/dt) is a small correction, ε9, to the first
summand.
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